Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtre
1.
medrxiv; 2024.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2024.04.13.24305771

Résumé

Scalable identification of patients with the post-acute sequelae of COVID-19 (PASC) is challenging due to a lack of reproducible precision phenotyping algorithms and the suboptimal accuracy, demographic biases, and underestimation of the PASC diagnosis code (ICD-10 U09.9). In a retrospective case-control study, we developed a precision phenotyping algorithm for identifying research cohorts of PASC patients, defined as a diagnosis of exclusion. We used longitudinal electronic health records (EHR) data from over 295 thousand patients from 14 hospitals and 20 community health centers in Massachusetts. The algorithm employs an attention mechanism to exclude sequelae that prior conditions can explain. We performed independent chart reviews to tune and validate our precision phenotyping algorithm. Our PASC phenotyping algorithm improves precision and prevalence estimation and reduces bias in identifying Long COVID patients compared to the U09.9 diagnosis code. Our algorithm identified a PASC research cohort of over 24 thousand patients (compared to about 6 thousand when using the U09.9 diagnosis code), with a 79.9 percent precision (compared to 77.8 percent from the U09.9 diagnosis code). Our estimated prevalence of PASC was 22.8 percent, which is close to the national estimates for the region. We also provide an in-depth analysis outlining the clinical attributes, encompassing identified lingering effects by organ, comorbidity profiles, and temporal differences in the risk of PASC. The PASC phenotyping method presented in this study boasts superior precision, accurately gauges the prevalence of PASC without underestimating it, and exhibits less bias in pinpointing Long COVID patients. The PASC cohort derived from our algorithm will serve as a springboard for delving into Long COVID's genetic, metabolomic, and clinical intricacies, surmounting the constraints of recent PASC cohort studies, which were hampered by their limited size and available outcome data.


Sujets)
COVID-19
2.
arxiv; 2024.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2401.11120v2

Résumé

Background Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, methods for incorporating CPGs into LLMs are not well studied. Methods We develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP). To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. Zero-Shot Prompting (ZSP) was used as the baseline method. We focus on CDS for COVID-19 outpatient treatment as the case study. Results All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrated high performance in human evaluation. Conclusion LLMs enhanced with CPGs demonstrate superior performance, as compared to plain LLMs with ZSP, in providing accurate recommendations for COVID-19 outpatient treatment, which also highlights the potential for broader applications beyond the case study.


Sujets)
COVID-19 , Maladie immunoproliférative de l'intestin grêle
3.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.10.04.23296301

Résumé

Background: Long COVID characterized as post-acute sequelae of SARS-CoV-2 (PASC) has no universal clinical case definition. Recent efforts have focused on understanding long COVID symptoms and electronic health records (EHR) data provides a unique resource for understanding this condition. The introduction of the International Classification of Diseases (ICD)-10 code U09.9 for - Post COVID-19 condition, unspecified to identify patients with long COVID has provided a method of evaluating this condition in EHRs, however, the accuracy of this code is unclear. Objective: Our study aimed to characterize the utility and accuracy of the U09.9 code across three healthcare systems - The Veterans Health Administration (VHA), Beth Israel Deaconess Medical Center (BIDMC) and The University of Pittsburgh Medical Center (UPMC) against patients identified with long COVID via a chart review by operationalizing the World Health Organization (WHO) and Centers for Disease Control (CDC) definitions. Methods: COVID positive patients with either a U07.1 ICD code or positive polymerase chain reaction (PCR) test within these healthcare systems were identified for chart review. Among this cohort we sampled patients based on two approaches i) with a U09.9 code and ii) without a U09.9 code but with a new onset PASC related ICD code, which allows us to assess the sensitivity of the U09.9 code. To operationalize the long COVID definition based on health agency guidelines, we grouped symptoms into a core cluster of 11 commonly reported symptoms among long COVID patients and an extended cluster, that captured all other symptoms by disease domain. Patients having at least 2 symptoms persisting for >=60 days that were new onset after their COVID infection, with at least one symptom in the core cluster, were labeled as having long COVID per chart review. We compared the performance of the code across three health systems and across different time periods of the pandemic. Results: A total of 900 patient charts were reviewed across 3 healthcare systems. The prevalence of long COVID among the cohort with the U09.9 ICD code, based on the operationalized WHO definition was between 23.2%-62.4% across these healthcare systems. We also evaluated a less stringent version of the WHO definition and the Centers for Disease Control (CDC) definition and observed an increase in the prevalence of long COVID at all three healthcare systems. Conclusions: This is one of the first studies to evaluate the U09.9 code against a clinical case definition for long COVID, as well as the first to apply this definition to EHR data using a chart review approach on a nationwide cohort across multiple healthcare systems. This chart review approach can be implemented at other EHR systems to further evaluate the utility and performance of the U09.9 code.


Sujets)
COVID-19 , Malocclusion dentaire
6.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.02.12.23285701

Résumé

The International Classification of Diseases (ICD)-10 code (U09.9) for post-acute sequelae of COVID-19 (PASC) was introduced in October of 2021. As researchers seek to leverage this billing code for research purposes in large scale real-world studies of PASC, it is of utmost importance to understand the functional use of the code by healthcare providers and the clinical characteristics of patients who have been assigned this code. To this end, we operationalized clinical case definitions of PASC using World Health Organization and Centers for Disease Control guidelines. We then chart reviewed 300 patients with COVID-19 from three participating healthcare systems of the 4CE Consortium who were assigned the U09.9 code. Chart review results showed the average positive predictive value (PPV) of the U09.9 code ranged from 40.2% to 65.4% depending on which definition of PASC was used in the evaluation. The PPV of the U09.9 code also fluctuated significantly between calendar time periods. We demonstrated the potential utility of textual data extracted from natural language processing techniques to more comprehensively capture symptoms associated with PASC from electronic health records data. Finally, we investigated the utilization of long COVID clinics in the cohort of patients. We observed that only an average of 24.0% of patients with the U09.9 code visited a long COVID clinic. Among patients who met the WHO PASC definition, only an average of 35.6% visited a long COVID clinic.


Sujets)
COVID-19 , Malocclusion dentaire
7.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.31.22273257

Résumé

Purpose : In young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population. Methods : A retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE). To identify the risk factors associated with ARDS, we compared young patients with and without ARDS through a federated analysis. We further compared the outcomes between young and old patients with ARDS. Results : Among the 75,377 hospitalized patients with positive SARS-CoV-2 PCR, 1001 young adults presented with ARDS ( 7.8% of young hospitalized adults). Their mortality rate at 90 days was 16.2% and they presented with a similar complication rate for infection than older adults with ARDS. Peptic ulcer disease, paralysis, obesity, congestive heart failure, valvular disease, diabetes, chronic pulmonary disease and liver disease were associated with a higher risk of ARDS. We described a high prevalence of obesity (53%), hypertension (38%- although not significantly associated with ARDS), and diabetes (32%). Conclusion : Trough an innovative method, a large international cohort study of young adults developing ARDS after SARS-CoV-2 infection has been gather. It demonstrated the poor outcomes of this population and associated risk factor.


Sujets)
Infections à coronavirus , Paralysie , Défaillance cardiaque , , Ulcère peptique , Broncho-pneumopathie chronique obstructive , Valvulopathies , Diabète , Obésité , Hypertension artérielle , COVID-19 , Maladies du foie
8.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270728

Résumé

Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted for unrelated indications with an incidentally positive test could be misclassified as a COVID-19 hospitalization. EHR-based studies have been unable to distinguish between a hospitalization specifically for COVID-19 versus an incidental SARS-CoV-2 hospitalization. From a retrospective EHR-based cohort in four US healthcare systems, a random sample of 1,123 SARS-CoV-2 PCR-positive patients hospitalized between 3/2020-8/2021 was manually chart-reviewed and classified as admitted-with-COVID-19 (incidental) vs. specifically admitted for COVID-19 (for-COVID-19). EHR-based phenotyped feature sets filtered out incidental admissions, which occurred in 26%. The top site-specific feature sets had 79-99% specificity with 62-75% sensitivity, while the best performing across-site feature set had 71-94% specificity with 69-81% sensitivity. A large proportion of SARS-CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based phenotypes differentiated admissions, which is important to assure accurate public health reporting and research.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
9.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.03.22270410

Résumé

ObjectiveFor multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. Materials and MethodsFor each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or can be a single center, corresponding to transfer learning. ResultsSimulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. ConclusionsThe SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.


Sujets)
Leishmaniose cutanée
10.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.15.21253596

Résumé

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that that are critical to COVID-19 research. The ontology contains over 50,000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for SARS-CoV-2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of nine academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.


Sujets)
COVID-19
11.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.27.21249817

Résumé

OBJECTIVE: Neurological complications can worsen outcomes in COVID-19. We defined the prevalence of a wide range of neurological conditions among patients hospitalized with COVID-19 in geographically diverse multinational populations. METHODS: Using electronic health record (EHR) data from 348 participating hospitals across 6 countries and 3 continents between January and September 2020, we performed a cross-sectional study of hospitalized adult and pediatric patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test, both with and without severe COVID-19. We assessed the frequency of each disease category and 3-character International Classification of Disease (ICD) code of neurological diseases by countries, sites, time before and after admission for COVID-19, and COVID-19 severity. RESULTS: Among the 35,177 hospitalized patients with SARS-CoV-2 infection, there was increased prevalence of disorders of consciousness (5.8%, 95% confidence interval [CI]: 3.7%-7.8%, pFDR


Sujets)
COVID-19 , Malocclusion dentaire , Maladies neurodégénératives héréditaires , Maladies neurodégénératives
12.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.16.20247684

Résumé

Objectives: To perform an international comparison of the trajectory of laboratory values among hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of laboratory value collection to predict severity across hospitals and regions. Design: Retrospective cohort study. Setting: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in Europe. Participants: Patients hospitalized with COVID-19, admitted before or after PCR-confirmed result for SARS-CoV-2. Primary and secondary outcome measures: Patients were categorized as ''ever-severe'' or ''never-severe'' using the validated 4CE severity criteria. Eighteen laboratory tests associated with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the curve (AUC), compared between the severity categories. Subgroup analysis was performed to validate a subset of laboratory values as predictive of severity against a published algorithm. A subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) was compared between North American and European sites for severity prediction. Results: Of 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with disease severity. Significant differences of laboratory values at admission were found between the two groups. With the exception of D-dimer, predictive discrimination of laboratory values did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte count as predictive of severity at admission showed similar discrimination to a published algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy as the disease progressed. On average, no difference in severity prediction was found between North American and European sites. Conclusions: Laboratory test values at admission can be used to predict severity in patients with COVID-19. There is a need for prediction models that will perform well over the course of the disease in hospitalized patients.


Sujets)
COVID-19
13.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20201855

Résumé

Introduction. The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) includes hundreds of hospitals internationally using a federated computational approach to COVID-19 research using the EHR. Objective. We sought to develop and validate a standard definition of COVID-19 severity from readily accessible EHR data across the Consortium. Methods. We developed an EHR-based severity algorithm and validated it on patient hospitalization data from 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also used a machine learning approach to compare selected predictors of severity to the 4CE algorithm at one site. Results. The 4CE severity algorithm performed with pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of single code categories for acuity were unacceptably inaccurate - varying by up to 0.65 across sites. A multivariate machine learning approach identified codes resulting in mean AUC 0.956 (95% CI: 0.952, 0.959) compared to 0.903 (95% CI: 0.886, 0.921) using expert-derived codes. Billing codes were poor proxies of ICU admission, with 49% precision and recall compared against chart review at one partner institution. Discussion. We developed a proxy measure of severity that proved resilient to coding variability internationally by using a set of 6 code classes. In contrast, machine-learning approaches may tend to overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold standard outcomes, possibly due to pandemic conditions. Conclusion. We developed an EHR-based algorithm for COVID-19 severity and validated it at 12 international sites.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche